Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.2 Exponential Functions - 12.2 Exercise Set - Page 796: 53

Answer

The factor of the polynomial $6{{x}^{2}}+x-12$ is $\left( 2x+3 \right)\left( 3x-4 \right)$.

Work Step by Step

The factor of the polynomial $6{{x}^{2}}+x-12$ is calculated as follows. Multiply the leading coefficient 6, and the constant term $-12$. That is $6\cdot \left( -12 \right)=-72$. Find a pair of factors whose product is $-72$ and whose sum is $1$. $\begin{matrix} Pairs of Factors of -72 & Sum of Factors \\ -1,72 & 71 \\ -2,36 & 34 \\ -3,24 & 21 \\ -4,18& 14 \\ -6,12 & 6 \\ -8,9 & 1 \\ \end{matrix}$ Therefore, the required integers are $-8$ and $9$. So, $6{{x}^{2}}+x-12=6{{x}^{2}}+9x-8x-12$ Group the first two terms and the last two terms. $6{{x}^{2}}+x-12=3x\left( 2x+3 \right)-4\left( 2x+3 \right)$ Factor out$\left( 2x+3 \right)$. $6{{x}^{2}}+x-12=\left( 2x+3 \right)\left( 3x-4 \right)$ Thus, the factor of the polynomial $6{{x}^{2}}+x-12$ is$\left( 2x+3 \right)\left( 3x-4 \right)$. Check: Consider the expression$\left( 2x+3 \right)\left( 3x-4 \right)$. Use the FOIL method to solve the inner bracket; $\begin{align} & \left( 2x+3 \right)\left( 3x-4 \right)=2x\cdot \left( 3x \right)+2x\cdot \left( -4 \right)+\left( 3 \right)\cdot \left( 3x \right)+\left( 3 \right)\cdot \left( -4 \right) \\ & =6{{x}^{2}}-8x+9x-12 \\ & =6{{x}^{2}}+x-12 \end{align}$ This verifies the result.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.