Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.2 Exponential Functions - 12.2 Exercise Set - Page 796: 51

Answer

The factor of the polynomial $3{{x}^{2}}-48$ is$3\left( x+4 \right)\left( x-4 \right)$.

Work Step by Step

$3{{x}^{2}}-48$ The factor of the polynomial $3{{x}^{2}}-48$ is calculated as follows. $3{{x}^{2}}-48=3{{x}^{2}}-3\cdot 16$ Use the distributive property, $a\cdot \left( b+c \right)=a\cdot b+a\cdot c$, to get, $\begin{align} & 3{{x}^{2}}-48=3{{x}^{2}}-3\cdot 16 \\ & =3\left( {{x}^{2}}-16 \right) \\ & =3\left( {{x}^{2}}-{{4}^{2}} \right) \end{align}$ Use the identity ${{A}^{2}}-{{B}^{2}}=\left( A-B \right)\left( A+B \right)$; $3{{x}^{2}}-48=3\left( x+4 \right)\left( x-4 \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.