Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.2 Exponential Functions - 12.2 Exercise Set - Page 796: 54

Answer

The factor of the polynomial $8{{x}^{6}}-64{{y}^{6}}$ is$8\left( {{x}^{2}}-2{{y}^{2}} \right)\left( {{x}^{4}}+2{{x}^{2}}{{y}^{2}}+4{{y}^{4}} \right)$.

Work Step by Step

$8{{x}^{6}}-64{{y}^{6}}$ The factor of the polynomial $8{{x}^{6}}-64{{y}^{6}}$ is calculated as follows. $\begin{align} & 8{{x}^{6}}-64{{y}^{6}}=8\cdot {{x}^{6}}-8\cdot 8{{y}^{6}} \\ & =8\left( {{x}^{6}}-8{{y}^{6}} \right)\text{ } \\ & =8\left( {{\left( {{x}^{2}} \right)}^{3}}-{{\left( 2{{y}^{2}} \right)}^{3}} \right)\text{ } \end{align}$ Use the formula${{A}^{3}}-{{B}^{3}}=\left( A-B \right)\left( {{A}^{2}}+A\cdot B+{{B}^{2}} \right)$ to solve the above expression as, $\begin{align} & 8{{x}^{6}}-64{{y}^{6}}=8\left( {{x}^{2}}-2{{y}^{2}} \right)\left( {{\left( {{x}^{2}} \right)}^{2}}+2{{x}^{2}}{{y}^{2}}+{{\left( 2{{y}^{2}} \right)}^{2}} \right) \\ & =8\left( {{x}^{2}}-2{{y}^{2}} \right)\left( {{x}^{4}}+2{{x}^{2}}{{y}^{2}}+4{{y}^{4}} \right) \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.