Answer
$3,000$
Work Step by Step
RECALL:
(i) Scientific notation has the form $a(10^n)$, where $1 \le a \lt 10$ and where $n$ is an integer.
(ii) $\frac{a^{m}}{a^{n}}=a^{m-n}$
(iii) $a^{m}a^{n}=a^{m+n}$
Write each number in scientific notation to obtain:
$=\dfrac{6(10^{-3}) \cdot 6(10^{2})}{4(10^{-5})\cdot 3(10^{1})}
\\=\dfrac{6\cdot 6(10^{-3+2})}{4.\cdot 3(10^{-5+1})}
\\=\dfrac{36(10^{-1})}{12(10^{-4})}$
Divide $36$ and $12$ together and divide the powers of 10 together to obtain:
$=\dfrac{36}{12} \cdot \dfrac{10^{-1}}{10^{-4}}
\\=3 \cdot 10^{-1-(-4)}
\\=3 \cdot 10^{-1+4}
\\=3 \cdot 10^3
\\=3,000$