College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 319: 21

Answer

$P(x)=(x+2)(x+3)(x-5)$ Zeros: $ \ -3,\ -2, \ 5 \ $

Work Step by Step

$P(x)=x^{3}-19x-30$ $P(-x)=-x^{3}+19x-30$ Descart's rule of signs: P(x) has 1 sign changes $\Rightarrow$ 1 positive zeros. P(-x) has 3 sign changes $\Rightarrow$ 3 or 1 negative zeros. Rational Zeros Theorem: candidates for p:$\quad \pm 1,\pm 2,\pm 3,\pm 5,\pm 6,\pm 10,\pm 15,\pm 30$ candidates for q:$\quad \pm 1,$ Possible rational zeros $\displaystyle \frac{p}{q}$:$\quad \pm 1,\pm 2,\pm 3,\pm 5,\pm 6,\pm 10,\pm 15,\pm 30$ Testing with synthetic division, $\left.\begin{array}{l} -2 \ \ |\\ \\ \\ \end{array}\right.\begin{array}{rrr} 1 & 0 & -19 &-30\\\hline &-2 & 4 & 30\\\hline 1& -2 & -15&|\ \ 0\end{array}$ $P(x)=(x+2)(x^{2}-2x-15)$ For the trinomial, find two factors of $-15$ with sum $-2$ ... ( they are $-5$ and $+3)$ $P(x)=(x+2)(x+3)(x-5)$ Zeros: $ \ -3,\ -2, \ 5 \ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.