College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 319: 20

Answer

$P(x)=(x+4)^{3}$ Zeros: $ \ -4\ \ \ $

Work Step by Step

$P(x)=x^{3}+12x^{2}+48x+64$ $P(-x)=-x^{3}+12x^{2}-48x+64$ Decscart's rule of signs: P(x) has 0 sign changes $\Rightarrow$ 0 positive zeros. P(-x) has 3 sign change $\Rightarrow$ 3 or 1 negative zeros. Rational Zeros Theorem: candidates for p:$\quad \pm 1,\pm 2,\pm 4,\pm 8,\pm 16,\pm 32,\pm 64$ candidates for q:$\quad \pm 1,$ Possible rational zeros $\displaystyle \frac{p}{q}$:$\quad \pm 1,\pm 2,\pm 4,\pm 8,\pm 16,\pm 32,\pm 64$ Testing with synthetic division, $\left.\begin{array}{l} -4 \ \ |\\ \\ \\ \end{array}\right.\begin{array}{rrr} 1 &12 & 48 &64\\\hline &-4 &-32 &-64\\\hline 1& 8 & 16&|\ \ 0\end{array}$ $P(x)=(x+4)(x^{2}+8x+16)$ For the trinomial, recognize a perfect square. $P(x)=(x+4)(x+4)^{2}=(x+4)^{3}$ Zeros: $ \ -4\ \ \ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.