College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 319: 19

Answer

$P(x)=(x-2)(x-2)^{2}=(x-2)^{3}$ Zeros: $ \ 2\ \ \ $

Work Step by Step

$P(x)=x^{3}-6x^{2}+12x-8$ $P(-x)=-x^{3}-6x^{2}-12x-8$ Decscart's rule of signs: P(x) has 3 sign changes $\Rightarrow$ 3 or 1 positive zeros. P(-x) has 0 sign change $\Rightarrow$ 0 negative zeros. Rational Zeros Theorem: candidates for p:$\quad \pm 1,\pm 2,\pm 4,\pm 8$ candidates for q:$\quad \pm 1,$ Possible rational zeros $\displaystyle \frac{p}{q}$:$\quad \pm 1,\pm 2,\pm 4,\pm 8$ Testing with synthetic division, $\left.\begin{array}{l} 2 \ \ |\\ \\ \\ \end{array}\right.\begin{array}{rrr} 1 &-6& 12 &-8\\\hline &2 & -8 &8\\\hline 1& -4 & 4&|\ \ 0\end{array}$ $P(x)=(x-2)(x^{2}-4x+4)$ For the trinomial, recognize a perfect square. $P(x)=(x-2)(x-2)^{2}=(x-2)^{3}$ Zeros: $ \ 2\ \ \ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.