College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 319: 17

Answer

$P(x)=(x-1)(x+2)^{2}$ Zeros: $-2,\ 1\ \ \ $

Work Step by Step

$P(x)=x^{3}+3x^{2}-4$ $P(-x)=-x^{3}+3x^{2}-4$ Decscart's rule of signs: P(x) has $1$ sign changes $\Rightarrow 1$ positive zeros. P(-x) has $2$ sign change $\Rightarrow$ 2 or 0 negative zeros. Rational Zeros Theorem: candidates for p:$\quad \pm 1,\pm 2,\pm 4$ candidates for q:$\quad \pm 1,$ Possible rational zeros $\displaystyle \frac{p}{q}$:$\quad \pm 1,\pm 2,\pm 4$ Testing with synthetic division, $\left.\begin{array}{l} 1|\\ \\ \\ \end{array}\right.\begin{array}{rrr} 1 &3& 0&-4\\\hline &1& 4 &4\\\hline 1& 4& 4&|\ \ 0\end{array}$ Remainder th: $x=1$ is a zero $\Rightarrow (x-1)$ is a factor (Factor th.). $P(x)=(x-1)(x^{2}+4x+4)$ For the trinomial, we recognize a perfect square. $P(x)=(x-1)(x+2)^{2}$ Zeros: $-2,\ 1\ \ \ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.