Answer
$10\sqrt{3}$
Work Step by Step
The given expression is
$=\sqrt{6}(\sqrt{18}+\sqrt{8})$
Factor as square terms.
$=\sqrt{3\cdot 2}(\sqrt{9\cdot 2}+\sqrt{4\cdot 2})$
Use product property of square roots.
$=\sqrt{3}\cdot \sqrt{2}(\sqrt{9}\cdot \sqrt{2}+\sqrt{4}\cdot \sqrt{2})$
Simplify.
$=\sqrt{3}\cdot \sqrt{2}(3\sqrt{2}+2\sqrt{2})$
Factor out $2$.
$=\sqrt{3}\cdot \sqrt{2}\sqrt{2}(3+2)$
Use product property of square roots.
$=\sqrt{3}\cdot \sqrt{2^2}(3+2)$
Simplify.
$=\sqrt{3}\cdot2(5)$
$=10\sqrt{3}$