Answer
$9\sqrt[3]2$
Work Step by Step
The given expression is
$=15\sqrt[3]2-2\sqrt[3]{54}$
Factor as cube terms.
$=15\sqrt[3]2-2\sqrt[3]{27\cdot 2}$
Use product property of cube roots.
$=15\sqrt[3]2-2\sqrt[3]{27}\cdot \sqrt[3]{2}$
Simplify.
$=15\sqrt[3]2-2\cdot 3\sqrt[3]{2}$
$=15\sqrt[3]2-6\sqrt[3]{2}$
Factor out $\sqrt[3]{2}$.
$=(15-6)\sqrt[3]2$
Simplify.
$=9\sqrt[3]2$