Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - Chapter Review - Page 534: 3

Answer

$\frac{5x^3\sqrt[3]{2x^2}}{2}$

Work Step by Step

The given expression is $=\sqrt[3]{\frac{125x^{11}}{4}}$ Use quotient property of cube roots. $=\frac{\sqrt[3]{125x^{11}}}{\sqrt[3]{4}}$ Multiply by $\frac{\sqrt[3]{2}}{\sqrt[3]{2}}$. $=\frac{\sqrt[3]{125x^{11}}}{\sqrt[3]{4}} \cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}}$ Use product property of cube roots. $=\frac{\sqrt[3]{125x^{11}\cdot 2}}{\sqrt[3]{4\cdot 2}}$ Simplify. $=\frac{\sqrt[3]{125x^{11}\cdot 2}}{\sqrt[3]{8}}$ Factor as cube terms. $=\frac{\sqrt[3]{5^3x^{9}x^2\cdot 2}}{\sqrt[3]{2^3}}$ Use product property of cube roots. $=\frac{\sqrt[3]{5^3}\sqrt[3]{x^{9}}\sqrt[3]{2x^2}}{\sqrt[3]{2^3}}$ Simplify. $=\frac{5x^3\sqrt[3]{2x^2}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.