Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.6 - Solving Nonlinear Systems of Equations - Exercises - Page 530: 7

Answer

The solutions are $(-1,6)$ and $(2,9)$.

Work Step by Step

The given system is $y=3x^2-2x+1$ ...... (1) $y=x+7$ ...... (2) Graph each equation. The point of intersections are $A=(-1,6)$ and $B=(2,9)$. Check: $(x,y)=(-1,6)$ Equation (1). $\Rightarrow y=3x^2-2x+1$ $\Rightarrow 6=3(-1)^2-2(-1)+1$ $\Rightarrow 6=3+2+1$ $\Rightarrow 6=6$ True. Equation (2). $\Rightarrow y=x+7$ $\Rightarrow 6=-1+7$ $\Rightarrow 6=6$ True. Check: $(x,y)=(2,9)$ Equation (1). $\Rightarrow y=3x^2-2x+1$ $\Rightarrow 9=3(2)^2-2(2)+1$ $\Rightarrow 9=12-4+1$ $\Rightarrow 9=13-4$ $\Rightarrow 9=9$ True. Equation (2). $\Rightarrow y=x+7$ $\Rightarrow 9=2+7$ $\Rightarrow 9=9$ True. Hence, the solutions are $(-1,6)$ and $(2,9)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.