Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.6 - Solving Nonlinear Systems of Equations - Exercises - Page 530: 11

Answer

The solutions are $(-3,-6)$ and $(3,6)$.

Work Step by Step

The given system is $y=\frac{1}{3}x^2+2x-3$ ...... (1) $y=2x$ ...... (2) Graph each equation. The point of intersections are $A=(-3,-6)$ and $B=(3,6)$. Check: $(x,y)=(-3,-6)$ Equation (1). $\Rightarrow y=\frac{1}{3}x^2+2x-3$ $\Rightarrow -6=\frac{1}{3}(-3)^2+2(-3)-3$ $\Rightarrow -6=3-6-3$ $\Rightarrow -6=3-9$ $\Rightarrow -6=-6$ True. Equation (2). $\Rightarrow y=2x$ $\Rightarrow -6=2(-3)$ $\Rightarrow -6=-6$ True. Check: $(x,y)=(3,6)$ $\Rightarrow y=\frac{1}{3}x^2+2x-3$ $\Rightarrow 6=\frac{1}{3}(3)^2+2(3)-3$ $\Rightarrow 6=3+6-3$ $\Rightarrow 6=9-3$ $\Rightarrow 6=6$ True. Equation (2). $\Rightarrow y=2x$ $\Rightarrow 6=2(3)$ $\Rightarrow 6=6$ True. Hence, the solutions are $(-3,-6)$ and $(3,6)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.