Answer
$\frac{3x \sqrt[3]{2x}}{7y^2}$
Work Step by Step
The given expression is
$=\sqrt[3]{\frac{54x^4}{343y^6}}$
Factor as cube terms.
$=\sqrt[3]{\frac{27x^3\cdot 2x}{343(y^2)^3}}$
Use quotient property of cube roots.
$=\frac{\sqrt[3]{27x^3\cdot 2x}}{\sqrt[3]{343(y^2)^3}}$
Use product property of cube roots.
$=\frac{\sqrt[3]{27}\sqrt[3]{x^3} \sqrt[3]{2x}}{\sqrt[3]{343}\sqrt[3]{(y^2)^3}}$
Simplify.
$=\frac{3x \sqrt[3]{2x}}{7y^2}$.