Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.1-9.3 - Quiz - Page 504: 11

Answer

$-10\sqrt{2}-5\sqrt{10}$

Work Step by Step

The given expression is $=\frac{10}{\sqrt{8}-\sqrt{10}}$ The conjugate of $\sqrt{8}-\sqrt{10}$ is $\sqrt{8}+\sqrt{10}$ $=\frac{10}{\sqrt{8}-\sqrt{10}} \cdot \frac{\sqrt{8}+\sqrt{10}}{\sqrt{8}+\sqrt{10}}$ Use sum and difference pattern. $=\frac{10(\sqrt{8}+\sqrt{10})}{(\sqrt{8})^2-(\sqrt{10})^2}$ Simplify. $=\frac{10(\sqrt{8}+\sqrt{10})}{8-10}$ $=\frac{10(\sqrt{8}+\sqrt{10})}{-2}$ $=-5(\sqrt{8}+\sqrt{10})$ Use distributive property. $=-5\sqrt{8}-5\sqrt{10}$ Factor as square terms. $=-5\sqrt{4\cdot 2}-5\sqrt{10}$ Use product property of square roots. $=-5\sqrt{4}\cdot \sqrt{2}-5\sqrt{10}$ Simplify. $=-5(2)\sqrt{2}-5\sqrt{10}$ $=-10\sqrt{2}-5\sqrt{10}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.