Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 4 - Writing Linear Functions - 4.7 - Piecewise Functions - Exercises - Page 223: 43

Answer

$g(x)=\left\{ \begin{array}{cc} 5x-40,& \quad \text{if }x\lt 8\\ -5x+40, & \quad \text{if }x \geq 8 \end{array} \right.$

Work Step by Step

The absolute value function $g(x)=a|x-h|+k$ can be written as a piecewise function. $g(x)=\left\{ \begin{array}{cc} a[-(x-h)]+k,& \quad \text{if }x-h\lt 0 \\ a(x-h)+k, & \quad \text{if }x-h \geq 0 \end{array} \right.$ Given $y=g(x)=-5|x-8|$ $\implies a=-5, h=8$ and $k=0$ Then, $g(x)$ as a piecewise function is $g(x)=\left\{ \begin{array}{cc} -5[-(x-8)]+0,& \quad \text{if }x-8\lt 0 \\ -5(x-8)+0, & \quad \text{if }x-8 \geq 0 \end{array} \right.$ Simplifying, we get $g(x)=\left\{ \begin{array}{cc} 5x-40,& \quad \text{if }x\lt 8\\ -5x+40, & \quad \text{if }x \geq 8 \end{array} \right.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.