Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 4 - Writing Linear Functions - 4.7 - Piecewise Functions - Exercises - Page 223: 41

Answer

$g(x)=\left\{ \begin{array}{cc} -2x-6,& \quad \text{if }x\lt -3\\ 2x+6, & \quad \text{if }x \geq -3 \end{array} \right.$

Work Step by Step

The absolute value function $g(x)=a|x-h|+k$ can be written as a piecewise function. $g(x)=\left\{ \begin{array}{cc} a[-(x-h)]+k,& \quad \text{if }x-h\lt 0 \\ a(x-h)+k, & \quad \text{if }x-h \geq 0 \end{array} \right.$ Given $y=g(x)=2|x+3|$ $\implies a=2, h=-3$ and $k=0$ Then, $g(x)$ as a piecewise function is $g(x)=\left\{ \begin{array}{cc} 2[-(x+3)]+0,& \quad \text{if }x+3\lt 0 \\ 2(x+3)+0, & \quad \text{if }x+3 \geq 0 \end{array} \right.$ Simplifying, we get $g(x)=\left\{ \begin{array}{cc} -2x-6,& \quad \text{if }x\lt -3\\ 2x+6, & \quad \text{if }x \geq -3 \end{array} \right.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.