Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 4 - Writing Linear Functions - 4.7 - Piecewise Functions - Exercises - Page 223: 39

Answer

$g(x)=\left\{ \begin{array}{cc} -x+2,& \quad \text{if }x\lt 2 \\ x-2, & \quad \text{if }x \geq 2 \end{array} \right.$

Work Step by Step

The absolute value function $g(x)=a|x-h|+k$ can be written as a piecewise function. $g(x)=\left\{ \begin{array}{cc} a[-(x-h)]+k,& \quad \text{if }x-h\lt 0 \\ a(x-h)+k, & \quad \text{if }x-h \geq 0 \end{array} \right.$ Given $y=g(x)=|x-2|$ $\implies a=1, h=2$ and $k=0$ Then, $g(x)$ as a piecewise function is $g(x)=\left\{ \begin{array}{cc} 1[-(x-2)]+0,& \quad \text{if }x-2\lt 0 \\ 1(x-2)+0, & \quad \text{if }x-2 \geq 0 \end{array} \right.$ Simplifying, we get $g(x)=\left\{ \begin{array}{cc} -x+2,& \quad \text{if }x\lt 2 \\ x-2, & \quad \text{if }x \geq 2 \end{array} \right.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.