Answer
$x=\frac{a-d}{b+c}$, where $b\neq0$ and $c\neq 0$.
Work Step by Step
The given equation is
$\Rightarrow a=bx+cx+d$
Subtract $d$ from each side.
$\Rightarrow a-d=bx+cx+d-d$
Simplify.
$\Rightarrow a-d=bx+cx$
Use distributive property.
$\Rightarrow a-d=x(b+c)$
Divide each side by $b+c$.
$\Rightarrow \frac{a-d}{b+c}=\frac{x(b+c)}{b+c}$
Simplify.
$\Rightarrow \frac{a-d}{b+c}=x$
Hence, the rewritten literal equation is $x=\frac{a-d}{b+c}$, where $b\neq0$ and $c\neq 0$.