Answer
Vertex: $(1,-2)$
Focus:
$(h,k+p)=(1,-4)$
Directrix:
$y=0$
Work Step by Step
Standard form of a parabola with vertical axis, vertex $(h,k)$ and focus $(h,k+p)$
$(x-h)^2=4p(y-k)$
$(x-1)^2+8(y+2)=0$
$(x-1)^2=-8(y+2)$
$h=1$ and $k=-2$
Vertex: $(1,-2)$
$4p=-8$
$p=-2$
Focus:
$(h,k+p)=(1,-2+(-2))=(1,-4)$
Directrix:
$y=k-p=-2-(-2)=0$