Answer
(b) $\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1$
Work Step by Step
Remember that hyperbolas follow the general equations: $\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1$ or $\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1$
The transverse axis is along whichever component is positive. So, in this case the $x^2$ term needs to be positive. Thus, (b) $\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1$ is a hyperbola with a horizontal transverse axis.