Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - 2.6 - Combinations of Functions: Composite Functions - 2.6 Exercises - Page 221: 73c

Answer

$f(x)=g(x)+h(x)=(x^2+1)+(-2x)$ $k(x)=g(x)+h(x)=\frac{1}{1-x^2}+(-\frac{x}{1-x^2})$

Work Step by Step

$f(x)=x^2-2x+1$ $g(x)=\frac{1}{2}[f(x)+f(-x)]=\frac{1}{2}[x^2-2x+1+(-x)^2-2(-x)+1]=\frac{1}{2}(2x^2+2)=x^2+1$ $h(x)=\frac{1}{2}[f(x)-f(-x)]=\frac{1}{2}[x^2-2x+1-((-x)^2-2(-x)+1)]=\frac{1}{2}(-4x)=-2x$ $k(x)=\frac{1}{x+1}$ $g(x)=\frac{1}{2}[k(x)+k(-x)]=\frac{1}{2}[\frac{1}{x+1}+\frac{1}{-x+1}]=\frac{1}{2}(\frac{2}{1-x^2})=\frac{1}{1-x^2}$ $h(x)=\frac{1}{2}[k(x)+k(-x)]=\frac{1}{2}[\frac{1}{x+1}-\frac{1}{-x+1}]=\frac{1}{2}(\frac{-2x}{1-x^2})=-\frac{x}{1-x^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.