Answer
Part A:
$\begin{bmatrix}
1 & -1 & 4\\
1 & 3 & 0\\
0 & -6 & 5\\
\end{bmatrix}$$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
17\\
-11\\
40\\
\end{bmatrix}$
Part B:
$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
4\\
-5\\
2\\
\end{bmatrix}$
Work Step by Step
Part A:
$\begin{bmatrix}
1 & -1 & 4\\
1 & 3 & 0\\
0 & -6 & 5\\
\end{bmatrix}$$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
17\\
-11\\
40\\
\end{bmatrix}$
Part B:
Gauss Jordan Elimination:
$\begin{bmatrix}
1 & -1 & 4 & |17\\
1 & 3 & 0 & |-11\\
0 & -6 & 5 & |40\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -1 & 4 & |17\\
0 & -4 & 4 & |28\\
0 & -6 & 5 & |40\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -1 & 4 & |17\\
0 & 1 & -1 & |-7\\
0 & -6 & 5 & |40\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -1 & 4 & |17\\
0 & 1 & -1 & |-7\\
0 & 0 & -1 & |-2\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -1 & 0 & |9\\
0 & 1 & 0 & |-5\\
0 & 0 & 1 & |2\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & 0 & 0 & |4\\
0 & 1 & 0 & |-5\\
0 & 0 & 1 & |2\\
\end{bmatrix}$
Therefore the answer is:
$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
4\\
-5\\
2\\
\end{bmatrix}$