Answer
Part A:
$\begin{bmatrix}
-2 & -3\\
6 & 1\\
\end{bmatrix}$$\begin{bmatrix}
x_{1}\\
x_{2}\\
\end{bmatrix}$ = $\begin{bmatrix}
-4\\
-36\\
\end{bmatrix}$
Part B:
$\begin{bmatrix}
x_{1}\\
x_{2}\\
\end{bmatrix}$ = $\begin{bmatrix}
-7\\
6\\
\end{bmatrix}$
Work Step by Step
Part A:
$\begin{bmatrix}
-2 & -3\\
6 & 1\\
\end{bmatrix}$$\begin{bmatrix}
x_{1}\\
x_{2}\\
\end{bmatrix}$ = $\begin{bmatrix}
-4\\
-36\\
\end{bmatrix}$
Part B:
Gauss Jordan Elimination:
$\begin{bmatrix}
-2 & -3 & |-4\\
6 & 1 & |-36\\
\end{bmatrix}$ ~ $\begin{bmatrix}
-2 & -3 & |-4\\
0 & -8 & |-48\\
\end{bmatrix}$ ~ $\begin{bmatrix}
-2 & -3 & |-4\\
0 & 1 & |6\\
\end{bmatrix}$ ~ $\begin{bmatrix}
-2 & 0 & |14\\
0 & 1 & |6\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & 0 & |-7\\
0 & 1 & |6\\
\end{bmatrix}$
Therefore the answer is:
$\begin{bmatrix}
x_{1}\\
x_{2}\\
\end{bmatrix}$ = $\begin{bmatrix}
-7\\
6\\
\end{bmatrix}$