Answer
Part A:
$\begin{bmatrix}
1 & -2 & 3\\
-1 & 3 & -1\\
2 & -5 & 5\\
\end{bmatrix}$$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
9\\
-6\\
17\\
\end{bmatrix}$
Part B:
$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
1\\
-1\\
2\\
\end{bmatrix}$
Work Step by Step
Part A:
$\begin{bmatrix}
1 & -2 & 3\\
-1 & 3 & -1\\
2 & -5 & 5\\
\end{bmatrix}$$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
9\\
-6\\
17\\
\end{bmatrix}$
Part B:
Gauss Jordan Elimination:
$\begin{bmatrix}
1 & -2 & 3 & |9\\
-1 & 3 & -1 & |-6\\
2 & -5 & 5 & |17\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -2 & 3 & |9\\
0 & 1 & 2 & |3\\
0 & -1 & -1 & |-1\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -2 & 3 & |9\\
0 & 1 & 2 & |3\\
0 & 0 & 1 & |2\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -2 & 0 & |3\\
0 & 1 & 0 & |-1\\
0 & 0 & 1 & |2\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & 0 & 0 & |1\\
0 & 1 & 0 & |-1\\
0 & 0 & 1 & |2\\
\end{bmatrix}$
Therefore the answer is:
$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
1\\
-1\\
2\\
\end{bmatrix}$