Answer
Part A:
$\begin{bmatrix}
1 & -5 & 2\\
-3 & 1 & -1\\
0 & -2 & 5\\
\end{bmatrix}$$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
-20\\
8\\
-16\\
\end{bmatrix}$
Part B:
$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
-1\\
3\\
-2\\
\end{bmatrix}$
Work Step by Step
Part A:
$\begin{bmatrix}
1 & -5 & 2\\
-3 & 1 & -1\\
0 & -2 & 5\\
\end{bmatrix}$$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
-20\\
8\\
-16\\
\end{bmatrix}$
Part B:
Gauss Jordan Elimination:
$\begin{bmatrix}
1 & -5 & 2 & |-20\\
-3 & 1 & -1 & |8\\
0 & -2 & 5 & |-16\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -5 & 2 & |-20\\
0 & 14 & -5 & |52\\
0 & -2 & 5 & |-16\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -5 & 2 & |-20\\
0 & 14 & -5 & |52\\
0 & 0 & 30 & |-60\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -5 & 0 & |-16\\
0 & 14 & 0 & |42\\
0 & 0 & 1 & |-2\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & -5 & 0 & |-16\\
0 & 1 & 0 & |3\\
0 & 0 & 1 & |-2\\
\end{bmatrix}$ ~ $\begin{bmatrix}
1 & 0 & 0 & |-1\\
0 & 1 & 0 & |3\\
0 & 0 & 1 & |-2\\
\end{bmatrix}$
Therefore the answer is:
$\begin{bmatrix}
x_{1}\\
x_{2}\\
x_{3}\\
\end{bmatrix}$ = $\begin{bmatrix}
-1\\
3\\
-2\\
\end{bmatrix}$