Answer
See below
Work Step by Step
We know A is $30.5$ ft from the origin, so $a=30.5$
The standard form for a horizontal transverse hyperbola is:
$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\\\frac{x^2}{(30.5)^2}-\frac{y^2}{b^2}=1\\\frac{x^2}{930.25}-\frac{y^2}{b^2}=1$$
Substitute $B(85,-40)$ to solve for b:
$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\\\frac{85^2}{930.25}-\frac{(-40)^2}{b^2}=1\\b^2=\frac{(-40)^2}{\frac{85^2}{930.25}-1}\approx 236.451$$
Hence, $$\frac{x^2}{930.25}-\frac{y^2}{236.451}=1$$