Answer
See below
Work Step by Step
Given: $f(x)=x^4+6x^3+14x^2+54x+45$
The possible rational zeros are: $\pm 1, \pm 3, \pm 5, \pm 9,\pm, \pm 45$
We found a zero: $x=-1$.
The given equation becomes:
$(x+1)(x^3+5x^2+9x+45)=0\\(x+1)[(x^3+5x^2)+(9x+45)]=0\\(x+1)(x^2+9)(x+5)=0\\(x+1)(x+5)(x-3i)(x+3i)=0$
The solutions are: $x=-1\\x=-5\\x=3i\\x=-3i$