Answer
See below
Work Step by Step
Given: $f(x)=x^4+x^3+2x^2+x-8$
The possible rational zeros are: $\pm 1, \pm 2, \pm 4, \pm 8$
The given equation becomes:
$(x-1)(x^3+2x^2+4x+8)=0\\(x-1)[(x^3+2x^2)+(4x+8)]=0\\(x-1)[(x^2+4)(x+2)]=0\\(x-1)(x+2)(x-2i)(x+2i)=0$
The solutions are: $x=1\\x=-2\\x=2i\\x=-2i$