Answer
$X=\begin{bmatrix}
\frac{31}{10}& -\frac{14}{5}& -\frac{19}{5}\\
\frac{9}{10}& -\frac{6}{5} & \frac{-6}{5}
\end{bmatrix}$
Work Step by Step
Multiply the inverse of the matrix on the left by the matrix on the right:
$X=\begin{bmatrix}
2& -8\\3 &-7
\end{bmatrix}^{-1}\begin{bmatrix}
-1 & 4& 2\\
3& 0 &-3
\end{bmatrix}\\=\frac{1}{-14+24}\begin{bmatrix}
-7 &8\\
-3 & 2
\end{bmatrix}\begin{bmatrix}
-1 & 4& 2\\
3& 0 &-3
\end{bmatrix}\\=\frac{1}{10}\begin{bmatrix}
7+24 &-28 & -14-24\\
3+6 & -12 & -6-6
\end{bmatrix}\\=\frac{1}{10}\begin{bmatrix}
31& -28 & -38\\
9 & -12 & -12
\end{bmatrix}\\=\begin{bmatrix}
\frac{31}{10}& -\frac{14}{5}& -\frac{19}{5}\\
\frac{9}{10}& -\frac{6}{5} & \frac{-6}{5}
\end{bmatrix}$