Answer
See the graph
Work Step by Step
Given: $y=2(x+4)(x-2)$
The function is already in intercept form $y=a(x-p)(x-q)$ with
$a=2$
$p=-4$
$q=2$
The x-coordinate is $x=\frac{p+q}{2}=\frac{-4+2}{2}=-1$
Substitute for x to find the y-coordinate:
$y=2(-1+4)(-1-2)=-18$
Hence, the vertex is $(-1,-18)$
The axis of symmetry is $x=-1$
Make a list of values:
$x=-4 \rightarrow y=0$
$x=2 \rightarrow y=0$
$x=-2 \rightarrow y=-16$
$x=0 \rightarrow y=-16$