Answer
See the graph
Work Step by Step
Given: $y=-(x+3)^2+5$
$y=-x^2-6x-4$
The x-coordinate is $x=\frac{-b}{2a}=\frac{-(-6)}{2.(-1)}=-3$
Substitute for x to find the y-coordinate:
$y=-(-3)^2-6(-3)-4=5$
Hence, the vertex is $(-3,5)$.
The axis of symmetry is $x=-3$.
Make a list of values:
$x=-6 \rightarrow y=-4$
$x=0 \rightarrow y=-4$
$x=-7 \rightarrow y=-11$
$x=1 \rightarrow y=-11$