Answer
$|-1-6i|=\sqrt{37}$
Work Step by Step
The absolute value of a complex number
$z=a+bi,$ denoted $|z|,$ is a nonnegative
real number defined as $|z|=\sqrt{a^{2}+b^{2}}$.
$|z|=|-1-6i|$
$=\sqrt{a^{2}+b^{2}}\qquad$ ...substitute $-1$ for $a$ and $-6$ for $b$
$=\sqrt{(-1)^{2}+(-6)^{2}}\qquad$ ...simplify.
$=\sqrt{1+36}$
$=\sqrt{37}$