Answer
$x=3$
$y=2$
$z=1$
Work Step by Step
Given: $x+y-z=4$
$\rightarrow x=-y+z+4$
Substitute for x in the second equation:
$3x + 2y + 4z = 17$
$3(-y+z+4)+2y+4z=17$
$-3y+3z+12+2y+4z=17$
$-y+7z=5$ (1)
Substitute for x in the third equation:
$-x + 5y + z = 8$
$-(-y+z+4)+5y+z=8$
$y-z-4+5y+z=8$
$6y=12$
$y=2$
Substitute for y in the first equation:
$-2+7z=5$
$7z=7$
$z=1$
Solve for x: $x=-2+1+4=3$