Answer
See below
Work Step by Step
We are given: $a,b,c$
Use law of cosines to find, $a^2=b^2+c^2-2bc\cos A\\\cos A=\frac{a^2-b^2-c^2}{-2bc}\\A=\arccos \frac{a^2-b^2-c^2}{-2bc}\\A\approx93.69^\circ$
Find $B=\frac{b^2-a^2-c^2}{-2ac}\\B\approx 33.89^\circ$
Since the sum of angles of a triangle is 180 degrees:
$A+B+C=190^\circ\\C=180-A-B=180-93.69-33.89=52.42^\circ$