Answer
See below
Work Step by Step
Using Pythagorean theorem we find, $b=\sqrt a^2+c^2\\=\sqrt 15^2+6^2\\=\sqrt 261\\=3\sqrt 29$
Since $a=15, b=3\sqrt 29$, we obtain: $\sin A=\frac{15}{3\sqrt 29}\\A=\arcsin \frac{15}{3\sqrt 29}\approx68.2^\circ$
$\sin C=\frac{6}{3\sqrt 29}\\C=\arcsin \frac{6}{3\sqrt 29} \approx 21.8^\circ$