Answer
See below
Work Step by Step
Since the sum of the triangle is $180^\circ$, we obtain:
$$A+B+C=180^\circ\\C=180^\circ-A-B\\C=180^\circ -72^\circ -44^\circ\\C=64^\circ$$
Use law of sines to find:
$$\frac{a}{\sin A}=\frac{b}{\sin B}\\ a=\frac{b}{\sin B}\times \sin A\\A=\arcsin(\frac{\sin B}{b}. a)\\A\approx 19.17^\circ$$
$$\frac{c}{\sin C}=\frac{b}{\sin B}\\c=\frac{b}{\sin B}\times \sin C\\c\approx18.11^\circ$$