Answer
Axis of symmetry: $x= \frac{3}{10}$
vertex: $(\frac{3}{10},\frac{49}{20})$
Work Step by Step
$y = -5x^{2} + 3x + 2$
The standard form for a quadratic equation is
$y = ax^{2} + bx + c$ So a= -5, b= 3, and c= 2
Axis of symmetry:
The formula for axis of symmetry is
$x= \frac{-b}{2a}$
$x= \frac{-(3)}{2(-5)}$
$x= \frac{3}{10}$
Vertex:
Plug in the x value of the axis of symmetry to find the y value of the vertex.
$y = -5x^{2} + 3x + 2$
$y = -5(\frac{3}{10})^{2} + 3(\frac{3}{10}) + 2$
$y= \frac{49}{20}$
The vertex is $(\frac{3}{10},\frac{49}{20})$