Answer
Axis of symmetry: $x= \frac{3}{2}$
Vertex: ($ \frac{3}{2}$,-$\frac{19}{4}$)
Work Step by Step
$y = 3x^{2} - 9x + 2 $
The standard form for a quadratic equation is
$y = ax^{2} + bx + c$ So a= 3, b= -9, and c= 2
Axis of symmetry:
The formula for axis of symmetry is
$x= \frac{-b}{2a}$
$x= \frac{-(-9)}{2(3)}$
$x= \frac{9}{6}$
$x= \frac{3}{2}$
Vertex:
Plug in the x value of the axis of symmetry to find the y value of the vertex.
$y = 3x^{2} - 9x + 2 $
$y = 3(\frac{3}{2})^{2} - 9(\frac{3}{2}) + 2 $
y= $\frac{-19}{4}$
The vertex is ($ \frac{3}{2}$,-$\frac{19}{4}$)