Algebra 1

Published by Prentice Hall
ISBN 10: 0133500403
ISBN 13: 978-0-13350-040-0

Chapter 9 - Quadratic Functions and Equations - 9-1 Quadratic Graphs and Their Properties - Practice and Problem-Solving Exercises - Page 539: 41

Answer

Vertex, (0,3) Axis of symmetry, x=0

Work Step by Step

Given the function $y= \frac{1}{4}x^{2} + 3$ We need to find the vertex and axis of symmetry $y=a(k(x-d))^{2} + c$ Vertex: The vertex for the base function $y= x^{2}$ is (0,0). Since the d value is zero, the graph does not shift left or right thus the x value of the vertex is 0. Since the c value is 3, the graph moves three units up thus the y value of the vertex is 3. Therefore the vertex is (0,3) Axis of symmetry: The Axis of symmetry of a $y= x^{2}$ graph is x=0. Since the d value is zero, the graph does not shift left or right thus the axis of symmetry is still x=0.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.