Answer
$(y)(3y+2)(y+4)$
Work Step by Step
Given :
$3y^{3}+14y^{2}+8y$
Now, $3.8=$$2.12$
Therefore, break the $14y^{2}$ term as $2y^{2}+12y^{2}$
This becomes :
$3y^{3}+12y^{2}+2y^{2}+8y$
$3y^{3}=3.y.y.y$ and $12y^{2}=2.2.3.y.y$
Hence, $GCF=$$3.y.y=3y^{2}$
$2y^{2}=2.y.y$ and $8y=2.2.2.y$
Hence, $GCF=$$2.y=2y$
After grouping:
$=(3y^{3}+12y^{2})+(2y^{2}+8y)$
$=3y^{2}(y+4)+2y(y+4)$
$=(3y^{2}+2y)(y+4)$
$=(y)(3y+2)(y+4)$