Answer
$g(-2) =\frac{1}{25}$
$g(-1) =\frac{2}{5}$
$g(0) = 4$
$g(1) = 40$
$g(2) = 400$
$g(3) = 4000$
The values of the range increase as the values of the domain increase.
Work Step by Step
We know that $a^{-n} = \frac{1}{a^n}$.
$g(-2) = 4*10^{-2} = 4*\frac{1}{10^2} = \frac{4}{100}=\frac{1}{25}$
$g(-1) = 4*10^{-1} = 4*\frac{1}{10}=\frac{2}{5}$
$g(0) = 4*10^0 = 4$
$g(1) = 4*10^1 = 40$
$g(2) = 4*10^2 = 400$
$g(3) = 4*10^3 = 4000$
The values of the range increase as the values of the domain increase.