Answer
$y^{0}*y^{6}$,$y^{1}*y^{5}$,$y^{2}*y^{4}$,$y^{3}*y^{3}$,$y^{4}*y^{2}$,$y^{5}*y^{1}$,$y^{6}*y^{0}$
Work Step by Step
$y^{6}$ can be represented as $y^{6} = y^{a}.y^{b} = y^{a+b}$
Hence,any $a,b$ such that $a+b=6$ is a solution
Now,possible values of $(a,b)$ are : $(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)$
Hence,possible expressions are : $y^{0}*y^{6}$,$y^{1}*y^{5}$,$y^{2}*y^{4}$,$y^{3}*y^{3}$,$y^{4}*y^{2}$,$y^{5}*y^{1}$,$y^{6}*y^{0}$