Answer
$2x^2+5x+7$
Work Step by Step
Given: $q(x)=(2x+13);d(x)=(x-4)$ and $r(x)=59$
Using remainder theorem:
$\dfrac{p(x)}{d(x)}=q(x)+\dfrac{r(x)}{p(x)}$
$\implies p(x)=q(x)d(x)+r(x)$
or, $p(x)=(2x+13)(x-4)+59$
After simplifications, we get
$p(x)=2x^2+5x+7$