Answer
vertex: $( -6,-504)$
Work Step by Step
Consider the equation: $y=x^2+12x-468$ ...(1)
The standard equation of the parabola is: $y=a(x-h)^2+k$ with vertex$(h,k)$
Consider right side $x^2+12x=468$
To complete the square add $(\frac{b}{2})^2=(\frac{12}{2})^2=36$.
$x^2+12x+36=468+36$
$(x+6)^2=504$
Thus, equation (1) becomes:
$y=(x+6)^2-504$
Compare it with the standard form of the parabola, we get
vertex: $( -6,-504)$