Answer
The answer is $5t^3-25t^2+115t-575+\frac{2881}{t+5}$
Work Step by Step
$(5t^4-10t^2+6) \div (t+5)$
$5t^3-25t^2+115t-575$
_________________________
$t+5) 5t^4-10t^2+6$
$-5t^4-25t^3$
_________________________
$-25t^3-10t^2 $
$25t^3+125t^2 $
_________________________
$115t^2 + 6$
$-115t^2-575t$
_________________________
$-575t+6$
$575t+2875$
_________________________
$2881$
The answer is $5t^3-25t^2+115t-575+\frac{2881}{t+5}$.