University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 9 - Rotation of Rigid Bodies - Problems - Exercises - Page 298: 9.58

Answer

(a) $\omega(t) = (6.40~rad/s^2)~t - (1.50~rad/s^3)~t^2$ (b) $\alpha(t) = (6.40~rad/s^2) - (3.00~rad/s^3)~t$ (c) The maximum positive angular velocity is 6.83 rad/s. $t = 2.13~s$

Work Step by Step

(a) $\theta(t) = (3.20~rad/s^2)~t^2 - (0.500~rad/s^3)~t^3$ $\omega(t) = \frac{d\theta}{dt}$ $\omega(t) = (6.40~rad/s^2)~t - (1.50~rad/s^3)~t^2$ (b) $\omega(t) = (6.40~rad/s^2)~t - (1.50~rad/s^3)~t^2$ $\alpha(t) = \frac{d\omega}{dt}$ $\alpha(t) = (6.40~rad/s^2) - (3.00~rad/s^3)~t$ (c) The maximum positive angular velocity occurs when $\alpha = 0$. $\alpha(t) = (6.40~rad/s^2) - (3.00~rad/s^3)~t = 0$ $(6.40~rad/s^2) = (3.00~rad/s^3)~t$ $t = \frac{6.40~rad/s^2}{3.00~rad/s^3}$ $t = 2.13~s$ We can find the maximum positive angular velocity. $\omega(t) = (6.40~rad/s^2)~t - (1.50~rad/s^3)~t^2$ $\omega = (6.40~rad/s^2)(2.13~s)- (1.50~rad/s^3)(2.13~s)^2$ $\omega = 6.83~rad/s$ The maximum positive angular velocity is 6.83 rad/s.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.