Answer
$I = \frac{1}{2} mR^2$
Work Step by Step
Let $v$ be the speed of the bucket.
$KE_{pulley} = \frac{1}{2}~KE_{bucket}$
$\frac{1}{2}I\omega^2 = \frac{1}{2}\times \frac{1}{2}mv^2$
$I(\frac{v}{R})^2 = \frac{1}{2}\times mv^2$
$I = \frac{1}{2} mR^2$