University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 7 - Potential Energy and Energy Conservation - Problems - Exercises - Page 233: 7.61

Answer

(a) $U(x) = \frac{(0.800~N~m^2)}{(x+0.200~m)}$ (b) $v = 3.27~m/s$

Work Step by Step

(a) $U(x) = -\int_{\infty}^{x}F_x~dx$ $U(x) = -\int_{\infty}^{x}\frac{\alpha}{(x+x_0)^2}~dx$ $U(x) = \frac{\alpha}{(x+x_0)}\vert_{\infty}^{x}$ $U(x) = \frac{\alpha}{(x+x_0)}$ $U(x) = \frac{(0.800~N~m^2)}{(x+0.200~m)}$ (b) $K_2+U_2=K_1+U_1$ $K_2 =0+U_1-U_2$ $\frac{1}{2}mv^2 = U_1-U_2$ $v^2 = \frac{2U_1-2U_2}{m}$ $v = \sqrt{\frac{2U_1-2U_2}{m}}$ $v = \sqrt{\frac{(2)\frac{(0.800~N~m^2)}{(0+0.200~m)}-(2)\frac{(0.800~N~m^2)}{(0.400~m+0.200~m)}}{0.500~kg}}$ $v = 3.27~m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.