Answer
$d = \frac{\frac{1}{2}v_0^2+gL~sin(\alpha)}{g~sin(\beta) +g~cos(\beta)~\mu_r}$
Work Step by Step
$K_2+U_2 = K_1+U_1+W$
$0+mgd~sin(\beta) = \frac{1}{2}mv_0^2+mgL~sin(\alpha)-mg~cos(\beta)~\mu_r~d$
$gd~sin(\beta) +g~cos(\beta)~\mu_r~d = \frac{1}{2}v_0^2+gL~sin(\alpha)$
$d = \frac{\frac{1}{2}v_0^2+gL~sin(\alpha)}{g~sin(\beta) +g~cos(\beta)~\mu_r}$